首页 | 本学科首页   官方微博 | 高级检索  
     

基于U-Net的多尺度低照度图像增强网络
引用本文:徐超越,余映,何鹏浩,李淼,马玉辉. 基于U-Net的多尺度低照度图像增强网络[J]. 计算机工程, 2022, 48(8): 215-223. DOI: 10.19678/j.issn.1000-3428.0062333
作者姓名:徐超越  余映  何鹏浩  李淼  马玉辉
作者单位:云南大学信息学院,昆明650091
基金项目:国家自然科学基金“基于视觉感知和认知机理的云南少数民族壁画数字修复关键技术研究”(62166048);国家自然科学基金“面向复杂场景自动目标检测和识别的变换域视觉注意模型研究”(61263048);云南省应用基础研究计划项目“面向复杂场景的新型视觉注意计算模型研究”(2018FB102);云南大学中青年骨干教师培养计划(XT412003)。
摘    要:低照度是夜晚拍摄时常见的一种现象,不充分的光照会使图像细节损失严重,降低图像视觉质量。针对现有低照度图像增强方法对不同尺度特征的感知和表达能力存在不足的问题,提出一种基于U-Net的多尺度低照度图像增强网络(MSU-LIIEN)。采用特征金字塔作为基本处理框架,实现对低照度图像的特征提取。在特征金字塔构建的3个分支结构中均使用U-Net作为骨干网,对提取到的浅层图像特征进行编码与解码操作,同时引入结构细节残差融合块以增强网络模型提取和表征低照度图像特征信息的能力。在此基础上,对提取到的特征信息逐层融合,恢复正常光照图像。实验结果表明,MSU-LIIEN在LOL-datasets和Brighting Train数据集中相比于性能排名第二的KinD模型,平均峰值信噪比分别提高16.21%和46.67%,且在主观视野感受和客观评价指标方面均优于所有对比的经典模型,不但能有效提升低照度图像的整体亮度,而且能很好地保持图像中的细节信息和清晰的物体边缘轮廓,使增强后的图像整体画面真实自然。

关 键 词:低照度图像增强  深度学习  U-Net网络  多尺度特征图  感受野
收稿时间:2021-08-12
修稿时间:2021-09-30

Multi-Scale Low-Light Image Enhancement Network Based on U-Net
XU Chaoyue,YU Ying,HE Penghao,LI Miao,MA Yuhui. Multi-Scale Low-Light Image Enhancement Network Based on U-Net[J]. Computer Engineering, 2022, 48(8): 215-223. DOI: 10.19678/j.issn.1000-3428.0062333
Authors:XU Chaoyue  YU Ying  HE Penghao  LI Miao  MA Yuhui
Affiliation:School of Information Science and Engineering, Yunnan University, Kunming 650091, China
Abstract:Low light is a common phenomenon when shooting at night.Insufficient illumination causes serious loss of image details and reduces visual quality.The existing low-light image enhancement methods have insufficient perception and expression of features at different scales.To address the problem of existing low-light image enhancement methods being inadequate in their ability to perceive and express features at different scales, a multi-scale low-light image enhancement network based on U-Net(MSU-LIIEN) is proposed.Firstly, the feature pyramid is used as the basic processing framework of this article to achieve feature extraction for low-light images.Then, the U-Net is used as the backbone in all three branch structures of the feature pyramid construction to encode and decode the extracted shallow image features, while structural detail residual fusion blocks are introduced to enhance the network's ability to extract and characterize low-light image feature information.Finally, the extracted feature information is fused layer by layer to recover the final image.The experimental results show that, compared with the second-performing KinD algorithm in LOL-datasets, the average Peak Signal-to-Noise Ratio(PSNR) value increased by 16.21%, and compared with the second-performing model on the Brighting Train dataset, the average PSNR value increased by 49.67%.The proposed algorithm outperforms other classical low-light image enhancement algorithms in terms of both subjective visual field perception and objective evaluation metrics.Not only does it effectively enhance the overall brightness of low-light images, but it also maintains detailed information in the image and clear object outlines, making the overall picture of the enhanced image realistic and natural.
Keywords:low-light image enhancement  deep learning  U-Net  multi-scale feature map  receptive field  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号