首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进PSO算法的LS-SVM油层识别模型
引用本文:夏克文,董瑶,杜红斌. 基于改进PSO算法的LS-SVM油层识别模型[J]. 控制与决策, 2007, 22(12): 1385-1389
作者姓名:夏克文  董瑶  杜红斌
作者单位:河北工业大学,信息工程学院,天津,300401;河北工业大学,信息工程学院,天津,300401;河北工业大学,信息工程学院,天津,300401
基金项目:国家自然科学基金项目(60173058,60377020).
摘    要:为解决常规油层识别方法因其本身缺陷而无法取得理想效果的缺点,提出一种基于改进PSO算法的LS-SVM油层识别模型,即综合已有改进的PSO模型提出一种新的改进形式,并用此算法迭代求解LS—SVM中出现的矩阵方程,从而避免矩阵求逆,加快LS-SVM算法的训练速度,节省内存,而且求得最优解.实际应用表明,所提出的识别模型优于BP模型和经典SVM模型,识别精度高、收敛速度快、效果显著.

关 键 词:最小二乘支持向量机  粒子群优化算法  油层识别
文章编号:1001-0920(2007)12-1385-05
收稿时间:2006-10-12
修稿时间:2006-12-25

Oil layer recognition model of LS-SVM based on improved PSO algorithm
XIA Ke-wen,DONG Yao,DU Hong-bin. Oil layer recognition model of LS-SVM based on improved PSO algorithm[J]. Control and Decision, 2007, 22(12): 1385-1389
Authors:XIA Ke-wen  DONG Yao  DU Hong-bin
Abstract:To solve the intrinsic shortcomings in general oil layer recognition methods,which is hard to obtain an ideal effect in application, the oil layer recognition model of LS-SVM based on the improved PSO algorithm is presented to iteratively solve the linear system of equations in LS-SVM algorithm, which is a new improved form by synthesized the existing model of PSO. By using the improved LS-SVM algorithm, the problem of solving inverse matrix is resolved and the training velocity of LS-SVM algorithm is quickened. Memory is saved and the least square solution is always got. The actual apptication shows that the improved LS-SVM model is superior to BP and SVM modet in oit layer recognition, which not only has much greater accuracy, but also improves the velocity of convergence.
Keywords:
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号