首页 | 本学科首页   官方微博 | 高级检索  
     


Environmentally Influenced Mixed Mode Fatigue Crack Propagation of Titanium Metal Matrix Composites
Authors:Deepak Mahulikar  H. L. Marcus
Affiliation:(1) Olin Metals Research Laboratories, 06511 New Haven, CT;(2) Department of Materials Science and Mechanical Engineering, The University of Texas, 78712 Austin, TX
Abstract:Effect of humid air environments on the mixed mode fatigue crack propagation behavior of B4C-B and BORSIC reinforced Ti-6A1-4V metal matrix composites was studied. Humid environments enhanced the mixed mode fatigue crack propagation rates in the as-received titanium matrix composites atR = 0.1. The effect was more pronounced in the transverse and 45 deg specimens. A transition in failure modes from fiber splitting in humid air to interfacial splitting in dry environments was observed at a load ratio of 0.1. The transition took place at around 100 Pa water vapor pressure, where a steep rise in fatigue crack propagation rate was noticed. AtR = 0.5, however, no fiber splitting was observed in humid air. Fatigue crack closure load measurements revealed that closure loads were higher in humid air than in dry environments. The fiber splitting is suggested as an environmentally induced crack closure effect, where plastically deformed matrix sets up stress fields (radial and mode III stresses) on the brittle boron fibers weakened by the humidity.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号