首页 | 本学科首页   官方微博 | 高级检索  
     


Poly(ADP-ribose) modulates the properties of MARCKS proteins
Authors:AA Schmitz  JM Pleschke  HE Kleczkowska  FR Althaus  G Vergères
Affiliation:Department of Biophysical Chemistry, Biozentrum, University of Basel, Switzerland.
Abstract:In mammalian cells, the formation of DNA strand breaks is accompanied by synthesis of poly(ADP-ribose). This nucleic acid-like homopolymer may modulate protein functions by covalent and/or noncovalent interactions. Here we show that poly(ADP-ribose) binds strongly to the proteins of the myristoylated alanine-rich C kinase substrate (MARCKS) family, MARCKS and MARCKS-related protein (also MacMARCKS or F52). MARCKS proteins are myristoylated proteins associated with membranes and the actin cytoskeleton. As targets for both protein kinase C (PKC) and calmodulin (CaM), MARCKS proteins are thought to mediate cross-talk between these two signal transduction pathways. Dot blot assays show that poly(ADP-ribose) binds to MARCKS proteins at the highly basic effector domain. Complex formation between MARCKS-related protein and CaM as well as phosphorylation of MARCKS-related protein by the catalytic subunit of PKC are strongly inhibited by equimolar amounts of poly(ADP-ribose), suggesting a high affinity of poly(ADP-ribose) for MARCKS-related protein. Binding of MARCKS-related protein to membranes is also inhibited by poly(ADP-ribose). Finally, poly(ADP-ribose) efficiently reverses the actin-filament bundling activity of a peptide corresponding to the effector domain and inhibits the formation of actin filaments in vitro. Our results suggest that MARCKS proteins and actin could be targets of the poly(ADP-ribose) DNA damage signal pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号