首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的永磁同步电机在线辨识与模型参考自适应控制
引用本文:蔡智慧,唐忠,马士英. 基于RBF神经网络的永磁同步电机在线辨识与模型参考自适应控制[J]. 华东电力, 2008, 36(2): 108-112
作者姓名:蔡智慧  唐忠  马士英
作者单位:1. 长沙理工大学,电气与信息工程学院,湖南,长沙,410076
2. 上海电力学院,计算机与信息工程学院,上海,200090
摘    要:永磁同步电机控制系统是多变量和非线性的。针对传统PI控制方法的不足,提出了一种基于RBF神经网络的永磁同步电机在线辨识与模型参考自适应控制方法。该方法利用RBF神经网络极强的非线性映射能力,通过对神经网络的离线和在线训练,实现了电机速度的自适应控制。仿真结果表明该方法控制精度高,动、静态特性好。

关 键 词:永磁同步电机  自适应控制  RBF神经网络  矢量控制  在线辨识
文章编号:1001-9529(2008)02-0108-05
修稿时间:2007-08-01

RBF neural network based on-line discrimination and model reference self-adaptive control for permanent magnet synchronous motors
CAI Zhi-hui,TANG Zhong,MA Shi-ying. RBF neural network based on-line discrimination and model reference self-adaptive control for permanent magnet synchronous motors[J]. East China Electric Power, 2008, 36(2): 108-112
Authors:CAI Zhi-hui  TANG Zhong  MA Shi-ying
Abstract:The control system of the permanent magnet synchronous motor is multi-variable and non-linear. To solve the defects of the traditional PI control method,a RBF neural network based on-line discrimination and model reference self-adaptive control method for permanent magnet synchronous motors is proposed which achieves the adaptive control of the motor speed by using the outstanding non-linear mapping ability of RBF neural network and the off-line and on-line training of the neural network.Simulations show that the method has high control accuracy and good dynamic and static characteristics.
Keywords:permanent magnet synchronous motor  self-adaptive control  RBF neural network  vector control  on-line discrimination
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号