首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of particle size distribution on stress development and microstructure of particulate coatings
Authors:" target="_blank">Yan Wu  Lorraine F Francis
Affiliation:1.Department of Chemical Engineering and Materials Science,University of Minnesota,Minneapolis,USA
Abstract:The role of pigment particle size distribution on stress and microstructure development was studied for coatings prepared from aqueous suspensions of ground calcium carbonate (GCC) and latex binder. Stress development was monitored using a modified beam deflection technique under controlled environment. Microstructure was characterized by scanning electron microscopy (SEM) and cryogenic SEM. For coatings containing only GCC particles and no latex, a wide particle size distribution resulted in a significant particle size gradient in the cross-sectional microstructure and irregular stress development. With latex addition, uniform microstructures were observed in coatings with either wide or narrow GCC particle size distribution. GCC/latex coatings prepared using GCC with a wide particle size distribution developed a higher stress than those prepared using GCC with a similar average particle size but a narrow particle size distribution. The higher stress is related to the particle packing that results in smaller pore sizes and larger capillary pressures that drive compaction. In coatings prepared with the same GCC particles but different latex binders, the stress and cracking behavior of the coating depends on the latex properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号