首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的BP神经网络电子系统状态预测方法研究
引用本文:李小珉,尹明. 基于遗传算法的BP神经网络电子系统状态预测方法研究[J]. 电子测量技术, 2016, 39(9): 182-186
作者姓名:李小珉  尹明
作者单位:海军工程大学电子工程学院武汉430033,海军工程大学电子工程学院武汉430033
摘    要:BP神经网络是一种应用面较广的神经网络,但存在明显缺陷:学习收敛速度慢,易陷入局部极小。遗传算法具有良好的搜索全局最优解的能力。为了提高BP神经网络预测模型在状态预测中的准确性,提出了一种基于遗传算法优化BP神经网络的状态预测方法.利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解,并将该预测方法应用到Buck输出电压平均值进行有效性验证。仿真结果表明,改进后方法具有较好的非线性拟合能力和更高的预测准确性。

关 键 词:BP神经网络;状态预测;遗传算法

Research on BP neural network state prediction method for electronic system based on genetic algorithm
Li Xiaomin and Yin Ming. Research on BP neural network state prediction method for electronic system based on genetic algorithm[J]. Electronic Measurement Technology, 2016, 39(9): 182-186
Authors:Li Xiaomin and Yin Ming
Affiliation:College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China and College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract:BP neural network is a neural network with a wide range of applications, but there are obvious defects: slow convergence and easy to fall into local minima. The genetic algorithm has the ability to search the global optimal solution with a good prediction model. In order to improve the accuracy in the prediction of BP neural network, a prediction method of genetic algorithm optimization based on BP neural network is proposed. Using genetic algorithm to optimize BP neural network weights and thresholds, and then training the BP neural network prediction model to obtain the optimal solution, and the prediction method is applied to the Buck output voltage average validated. The simulation results show that the improved method has good non linear fitting capability and higher the accuracy of prediction.
Keywords:BP neural network   state prediction   genetic algorithm
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号