首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度邻域搜索PSO 算法的装配序列优化问题
引用本文:宫华 袁田 张彪. 基于深度邻域搜索PSO 算法的装配序列优化问题[J]. 控制与决策, 2016, 31(7): 1291-1295
作者姓名:宫华 袁田 张彪
作者单位:沈阳理工大学理学院,沈阳110159.
基金项目:

国家自然科学基金项目(71101097);辽宁省“百千万人才工程” 培养项目(2014921043);辽宁省高等学校优秀人才支持计划项目(2015056);辽宁省先进制造技术与装备重点实验室开放基金课题.

摘    要:

针对产品结构特征建立几何约束矩阵, 以最大化满足几何约束条件装配次数和最小化装配方向改变次数为目标, 研究产品装配序列优化问题. 利用值变换的粒子位置和速度更新规则, 基于具有随机性启发式算法产生初始种群, 提出一种带有深度邻域搜索改进策略的粒子群算法解决装配序列问题. 通过装配实例验证了所提出算法的性能并对装配序列质量进行了评价, 所得结果表明了该算法在解决装配序列优化问题上的有效性与稳定性.



关 键 词:

装配序列优化|粒子群算法|深度邻域搜索|几何约束

收稿时间:2015-07-01
修稿时间:2015-12-15

Assembly sequence planning problem based on particle swarm optimization algorithm with depth local search
GONG Hua YUAN Tian ZHANG Biao. Assembly sequence planning problem based on particle swarm optimization algorithm with depth local search[J]. Control and Decision, 2016, 31(7): 1291-1295
Authors:GONG Hua YUAN Tian ZHANG Biao
Abstract:

For the structure characters of the products, a matrix of geometric constraints is established. An optimization model of assembly sequence planning is studied to maximize the number of assembly operations with the geometric assembly constraints and minimize the number of changing assembly direction. The updating rules of particle position and velocity are derived based on the value transformation. A heuristic algorithm with randomness characteristic is provided in order to generate the initial populations. A particle swarm optimization algorithm with the depth local search strategy is developed to solve the assembly sequence planning problem. To evaluate the performance of the algorithm and the quality of the assembly sequences, an experiment of an assembly instance is tested. The results show the effectiveness and stability of the proposed algorithm on solving the assembly sequence planning problem.

Keywords:

assembly sequence planning|particle swarm optimization|depth local search|geometric constraints

点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号