首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of heat transfer and unsaturated flow in woven fiber reinforcements during direct injection-pultrusion process of thermoplastic composites
Affiliation:1. Fraunhofer Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV, Am Technologiezentrum 2, 86159 Augsburg, Deutschland
Abstract:This paper provides a methodology for the modeling of heat transfer and polymer flow during direct thermoplastic injection pultrusion process. Pultrusion was initially developed with thermosets which have low viscosity. But the impregnation becomes a critical point with thermoplastics which exhibit higher viscosity. There are very few reported works on direct thermoplastic impregnation with injection within the die. In addition, the rare studies have not adequately addressed the issue of unsaturated flow in woven fiber reinforcements. The solution proposed here, models the polymer flow through dual-scale porous media. A heat transfer model is coupled to a flow model enriched with a sink term. Specific changes of variables are made so as to model the steady state solution of unsaturation along a continuous process. The sink term, added to the continuity equation, represents the absorption rate of polymer by the bundles. Data were measured on a pultrusion line and micrographs confirmed the modeling strategy with an unsaturated flow approach. The flow modeling coupled to heat transfer of the thermoplastic pultrusion process aims at determining the saturation evolution through the die so as to manufacture pultruded profiles with the lowest residual porosity.
Keywords:A  Thermoplastic resin  B  Porosity  E  Pultrusion  E  Resin flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号