首页 | 本学科首页   官方微博 | 高级检索  
     


Calculation of Thermal Stresses in Glass-Ceramic Composites
Authors:Ganghoffer  Jean-François
Affiliation:(1) LEMTA–ENSEM, 2, Avenue de la Forêt de Haye, BP 160, 54504 Vandoeuvre Cedex, France
Abstract:Opto-electronics make intensive use of composite materialsbased on amorphous materials, which can be considered as smart materialssince they are capable of high performances in their final state.Particularly, glass-ceramic composites involved in welding operationsfor microelectronics applications are subjected to important thermalstresses during their production, which can deteriorate their propertiesat room temperature, until the failure stage is reached. It is thenessential to be able to predict the evolution of the internal stressesgenerated during the cooling. We have performed finite-elementsimulations in order to quantify the stress evolutions for differentcomposite geometries: a ceramic fiber embedded within a glass matrix, aspherical particle located at the center of a spherical glass matrix,and a dispersion of spherical ceramic particles, this last case beingthe most representative of reality. The thermomechanical modeling of theglassy matrix takes into account its viscoelastic behavior, and theglass transition is described by the decrease during cooling of the freevolume as a function of the temperature history. The combined effect ofthe differential thermal strain during the transition and mechanicalrelaxation of glass on stress evolutions is evidenced. It is shown thatthe consideration of a periodical or random distribution of sphericalceramic particles leads to similar stress profiles.
Keywords:finite-element simulations  glass-ceramic composites  glass transition  thermal stresses  viscoelasticity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号