首页 | 本学科首页   官方微博 | 高级检索  
     

SVM+BiHMM:基于统计方法的元数据抽取混合模型
引用本文:张 铭,银 平,邓志鸿,杨冬青. SVM+BiHMM:基于统计方法的元数据抽取混合模型[J]. 软件学报, 2008, 19(2): 358-368. DOI: 10.3724/SP.J.1001.2008.00358
作者姓名:张 铭  银 平  邓志鸿  杨冬青
作者单位:北京大学,信息科学技术学院,北京,100871
基金项目:Supported by the National Natural Science Foundation of China under Grant Nos.90412010, 60573166 (国家自然科学基金),the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.2007108 (高等学校博士学科点专项科研基金),the HP University Collaborative Foundation of China under Grant No.HLCFY08-001 (惠普大学合作基金)
摘    要:提出了一种SVM BiHMM的混合元数据自动抽取方法.该方法基于SVM(support vector machine)和二元HMM(bigram HMM(hidden Markov model),简称BiHMM)理论.二元HMM模型BiHMM在保持模型结构不变的前提下,通过区分首发概率和状态内部发射概率,修改了HMM发射概率计算模型.在SVM BiHMM复合模型中,首先根据规则把论文粗分为论文头、正文以及引文部分,然后建立SVM模型把文本块划分为元数据子类,接着采用Sigmoid双弯曲函数把SVM分类结果用于拟合调整BiHMM模型的单词发射概率,最后用复合模型进行元数据抽取.SVM方法有效考虑了块间联系,BiHMM模型充分考虑了单词在状态内部的位置信息,二者的元数据抽取结果得到了很好的互补和修正,实验评测结果表明,SVM BiHMM算法的抽取效果优于其他方法.

关 键 词:元数据抽取  基于规则的信息抽取  支持向量机  隐马尔科夫模型  二元HMM模型
收稿时间:2006-03-28
修稿时间:2007-06-07

SVM+BiHMM: A Hybrid Statistic Model for Metadata Extraction
ZHANG Ming,YIN Ping,DENG Zhi-Hong and YANG Dong-Qing. SVM+BiHMM: A Hybrid Statistic Model for Metadata Extraction[J]. Journal of Software, 2008, 19(2): 358-368. DOI: 10.3724/SP.J.1001.2008.00358
Authors:ZHANG Ming  YIN Ping  DENG Zhi-Hong  YANG Dong-Qing
Abstract:This paper proposes SVM+BiHMM, a hybrid statistic model of metadata extraction based on SVM (support vector machine) and BiHMM (bigram HMM (hidden Markov model)). The BiHMM model modifies the HMM model with both Bigram sequential relation and position information of words, by means of distinguishing the beginning emitting probability from the inner emitting probability. First, the rule based extractor segments documents into line-blocks. Second, the SVM classifier tags the blocks into metadata elements. Finally, the SVM+BiHMM model is built based on the BiHMM model, with the emitting probability adjusted by the Sigmoid function of SVM score, and the transition probability trained by Bigram HMM. The SVM classifier benefits from the structure patterns of document line data while the Bigram HMM considers both words' Bigram sequential relation and position information, so the complementary SVM+BiHMM outperforms HMM, BiHMM, and SVM methods in the experiments on the same task.
Keywords:metadata extraction  rule based information extraction  SVM (support vector machine)  HMM (hidden Markov model)  BiHMM (bigram hidden Markov model)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号