A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasi‐Solid Photoelectrochromic Devices with Excellent Long‐Term Stability under Real Outdoor Operating Conditions |
| |
Authors: | Federico Bella George Leftheriotis Gianmarco Griffini George Syrrokostas Stefano Turri Michael Grätzel Claudio Gerbaldi |
| |
Affiliation: | 1. GAME Lab, CHENERGY Group, Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy;2. Energy and Environment Lab, Physics Department, University of Patras, Panepistimioupoli Patron, Greece;3. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy;4. Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
| |
Abstract: | A new photoelectrochromic device (PECD) is presented in this work proposing the combination of a WO3‐based electrochromic device (ECD) and a polymer‐based dye‐sensitized solar cell (DSSC). In the newly designed architecture, a photocurable polymeric membrane is employed as quasi‐solid electrolyte for both the ECD and the DSSC. In addition, a photocurable fluoropolymeric system is incorporated as solution‐processable external protective thin coating film with easy‐cleaning and UV‐shielding functionalities. Such new polymer‐based device assembly is characterized by excellent device operation with improved photocoloration efficiency and switching ability compared with analogous PECDs based on standard liquid electrolyte systems. In addition, long‐term (>2100 h) stability tests under continuous exposure to real outdoor conditions reveal the remarkable performance stability of this new quasi‐solid PECD system, attributed to the protective action of the photocurable fluorinated coating that effectively prevents photochemical and physical degradation of the PECD components during operation. This first example of quasi‐solid PECD systems paves the way for a new generation of thermally, electrochemically, and photochemically stable polymer‐based PECDs, and provides for the first time a clear demonstration of their true potential as readily upscalable smart window components for energy‐saving buildings. |
| |
Keywords: | dye‐sensitized solar cells fluoropolymers photoelectrochromic photopolymerization stability |
|
|