首页 | 本学科首页   官方微博 | 高级检索  
     


Proton Transport in Electrospun Hybrid Organic–Inorganic Membranes: An Illuminating Paradox
Authors:Leslie Dos Santos  Manuel Maréchal  Armel Guillermo  Sandrine Lyonnard  Simona Moldovan  Ovidiu Ersen  Ozlem Sel  Hubert Perrot  Christel Laberty‐Robert
Affiliation:1. Sorbonne Université, UPMC Univ. Paris 06, CNRS UMR 7574, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris, France;2. CNRS, INAC‐SPRAM, Grenoble, France;3. Univ. Grenoble Alpes, INAC‐SPRAM, Grenoble, France;4. CEA, INAC‐SPRAM, Grenoble, France;5. Institut de Physique et Chimie des Matériaux des Strasbourg, IPCMS, CNRS UMR 7504, Strasbourg 02, France;6. Sorbonne Université, UPMC Univ Paris 06, CNRS UMR 8235, Laboratoire Interfaces et Systèmes Electrochimiques, Paris, France
Abstract:Chemistry and processing have to be judiciously combined to structure the membranes at various length scales to achieve efficient properties for polymer electrolyte membrane fuel cell to make it competitive for transport. Characterizing the proton transport at various length and space scales and understanding the interplays between the nanostructuration, the confinement effect, the interactions, and connectivity are consequently needed. The goal here is to study the proton transport in multiscale, electrospun hybrid membranes (EHMs) at length scales ranging from molecular to macroscopic by using complementary techniques, i.e., electrochemical impedance spectroscopy, pulsed field gradient‐NMR spectroscopy, and quasielastic neutron scattering. Highly conductive hybrid membranes (EHMs) are produced and their performances are rationalized taken into account the balances existing between local interaction driven mobility and large‐scale connectivity effects. It is found that the water diffusion coefficient can be locally decreased (2 × 10?6 cm2 s?1) due to weak interactions with the silica network, but the macroscopic diffusion coefficient is still high (9.6 × 10?6 cm2 s?1). These results highlight that EHMs have slow dynamics at the local scale without being detrimental for long‐range proton transport. This is possible through the nanostructuration of the membranes, controlled via processing and chemistry.
Keywords:diffusion coefficients  electrospun membranes  hybrid membranes  multiscales  multitechniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号