首页 | 本学科首页   官方微博 | 高级检索  
     

硼掺杂金刚石薄膜电极降解青霉素G钠废水机制
引用本文:曲有鹏,吕江维,冯玉杰,张杰. 硼掺杂金刚石薄膜电极降解青霉素G钠废水机制[J]. 哈尔滨工业大学学报, 2020, 52(6): 119-125. DOI: 10.11918/202002048
作者姓名:曲有鹏  吕江维  冯玉杰  张杰
作者单位:城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨 150090;哈尔滨工业大学生命科学与技术学院,哈尔滨 150080,哈尔滨商业大学药学院,哈尔滨 150076,城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨 150090,城市水资源与水环境国家重点实验室(哈尔滨工业大学),哈尔滨 150090
基金项目:国家自然科学基金(51308171); 中国博士后科学基金(2016M591534); 黑龙江省政府博士后资助项目(LBH-Z16088)
摘    要:针对抗生素废水中青霉素类物质难于生化降解的问题,采用直流等离子体化学气相沉积方法制备硼掺杂金刚石(boron-doped diamond, BDD)薄膜电极,以典型的青霉素G钠为目标污染物,对BDD电极降解青霉素的规律及降解历程进行研究.结果表明,不同质量浓度的青霉素G钠在电极上均能够被完全降解,发生电化学燃烧.青霉素G钠和化学需氧量(chemical oxygen demand, COD)的降解符合一级反应动力学,电流密度从10 mA/cm2提高到20 mA/cm2时,青霉素G钠和COD的反应速率常数分别增加了51.3%和29.1%.BDD电极上青霉素G钠的降解主要受液相传质过程控制,电流效率(current efficiency, EC)与青霉素G钠的质量浓度和电流密度有关.得到了青霉素G钠在BDD电极上的降解历程,主要的中间产物有青霉酸、异构青霉酸、青霉烯酸和青霉噻唑酸.

关 键 词:硼掺杂金刚石  电催化电极  电化学降解  抗生素废水  青霉素
收稿时间:2020-02-12

Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes
QU Youpeng,L Jiangwei,FENG Yujie,ZHANG Jie. Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 119-125. DOI: 10.11918/202002048
Authors:QU Youpeng  L Jiangwei  FENG Yujie  ZHANG Jie
Affiliation:State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of Technology, Harbin 150090, China ;School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
Abstract:To deal with the bio-refractory substances of penicillin in antibiotic wastewater, boron-doped diamond (BDD) electrodes prepared by direct current plasma chemical vapor deposition system were used to investigate the degradation rule and pathway of penicillin wastewater with penicillin G sodium as target pollutant. Results show that penicillin G sodium with different concentrations could be completely degraded at BDD electrodes by electrochemical combustion reaction. The degradation of penicillin G sodium and chemical oxygen demand (COD) accorded with the pseudo-first-order rate kinetics. When the current density was increased from 10 mA/cm2 to 20 mA/cm2, the apparent reaction rate constant of penicillin G sodium and COD increased by 51.3% and 29.1%, respectively. The degradation of penicillin G sodium at BDD electrodes was controlled by mass transfer in liquid phase. The concentration of penicillin G sodium and current density greatly influenced the current efficient (EC). Major intermediate products of the degradation pathway of penicillin G sodium at BDD electrodes were penillic acid, isopenillic acid, penicillenic acid, and penicilloic acid.
Keywords:boron-doped diamond (BDD)   electrocatalytic electrode   electrochemical degradation   antibiotic wastewater   penicillin
本文献已被 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号