首页 | 本学科首页   官方微博 | 高级检索  
     

改进的数据驱动子空间算法求解钢铁企业能源预测问题
引用本文:张颜颜,唐立新. 改进的数据驱动子空间算法求解钢铁企业能源预测问题[J]. 控制理论与应用, 2012, 29(12): 1616-1622
作者姓名:张颜颜  唐立新
作者单位:1. 东北大学物流优化与控制计究所,辽宁沈阳110819;东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819
2. 东北大学物流优化与控制计究所,辽宁沈阳110819;东北大学辽宁省制造系统与物流优化重点实验室,辽宁沈阳110819
基金项目:国家自然科学基金重点资助项目(71032004); 教育部基本科研业务费资助项目(N100304012, N090104002, N100704002); 国家“111”资助项目(B08015).
摘    要:本文以钢铁企业生产与能源系统作为研究背景,设计一种数据驱动的子空间方法(data-driven subspace,DDS)预测各生产工序的能源消耗.针对钢铁生产中能源消耗和回收的特点进行了分析,以提取子空间方法的建模因素;为了设计有效的求解方法,对实际生产和数据的特征进行了分析.为了提高预测准确率,文中引入了反馈因子和遗忘因子来改进子空间方法,因子的取值采用粒子群算法(particle swarm optimization,PSO)来优化.对实际生产数据的测试验证了本文所提出的方法的有效性,该结果能够为钢铁企业的能源预测和管理提供有效的决策支持.

关 键 词:数据驱动子空间  粒子群优化  能源预测
收稿时间:2012-02-29
修稿时间:2012-06-14

Improved data-driven subspace algorithm for energy prediction in iron and steel industry
ZHANG Yan-yan and TANG Li-xin. Improved data-driven subspace algorithm for energy prediction in iron and steel industry[J]. Control Theory & Applications, 2012, 29(12): 1616-1622
Authors:ZHANG Yan-yan and TANG Li-xin
Affiliation:The Logistics Institute, Northeastern University; State Key Laboratory of Synthetical Automation for Process Industries,The Logistics Institute, Northeastern University; Liaoning Key Laboratory of Manufacturing System and Logistics
Abstract:Using the production and energy system in Iron and Steel industry as the research background, we propose a data-driven subspace (DDS) method for predicting the energy consumption of production operations. The characteristics of energy consumption and regeneration are fully investigated to find the crucial factors for building the model. The features of practical conditions and data are analyzed in designing the efficient solving method. The subspace method is improved by introducing the feedback factor and the forgetting factor, values of which are optimized by particle swarm optimization (PSO) algorithm in order to improve the prediction accuracy. The performance of the improved method is demonstrated by experimental tests using the practical data, which provide beneficial results in energy prediction and management.
Keywords:data-driven subspace   particle swarm optimization   energy prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号