首页 | 本学科首页   官方微博 | 高级检索  
     


Burning behavior of two adjacent pool fires behind a building in a cross-wind
Authors:Zhibin Chen  Kohyu Satoh  Jennifer Wen  Ran Huo  Longhua Hu
Affiliation:1. Centre for Fire and Explosion Studies, Faculty of Engineering, Kingston University, Friars Avenue, Roehampton Vale, London SW15 3DW, United Kingdom;2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Abstract:With the global move towards performance based fire design, fire safety assessment in and around buildings becomes increasingly important. However, key knowledge gaps still exist concerning the behavior of fire swirling, which may be generated if one or more accidental fires are in the passage of the vortices behind an adjacent tall building. The present study is focused on the experimental investigations of the burning behavior of two pool fires behind 1/50 scaled tall buildings with heights varying from 0.565 to 1.165 m in a cross-wind. The objective is to gain insight of the effect of the distance between the two fires (D2), the distance between the fires and the building (D1), wind speed (V), and the height of the scaled building (H) on the burning behavior. Important conclusions have been drawn about the influence of D1 and D2 on the fuel mass loss rate, the influence of D1 on fire swirling, the influence of D2 on the possible merging of the two fires and the effect of wind speed on the mass loss rate. The results suggested the existence of a critical velocity for the cross-wind on the initiation of fire swirling and an approximate value was identified for the conditions in the tests. The investigations also covered the effect of height of the scaled building on the fuel mass loss rate and the occurrence of fire swirling. This relationship was found to be also dependent on the wind speed. Analysis of the results has led to some important recommendations to enhance the fire protection of tall buildings.
Keywords:Fire swirling  Fire merging  Mass loss rate  Critical velocity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号