Affiliation: | 1.School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China ;2.School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China ; |
Abstract: | Introducing magnetic metal onto semiconductor materials has been proven to be an attractive strategy for enhancing the photocatalytic activity in the visible region. In this work, ternary heterostructure magnetic semiconductor photocatalyst RGO/ZnFe2O4/Ag2WO4 was successfully synthesized through a simple hydrothermal method and was evaluated by photodegradation of Rhodamine B (RhB) under visible light irradiation. The composition, structure, morphology, and optical absorption properties of the as-prepared photocatalyst were investigated by XRD, FT-IR, SEM, and UV–Vis DRS, respectively. It was found that the photocatalytic activity under visible light irradiation was in the order of RGO/ZnFe2O4/Ag2WO4?>?ZnFe2O4?>?Ag2WO4?>?RGO/ZnFe2O4 and RGO/ZnFe2O4/Ag2WO4. The enhancement of photocatalytic performance could be attributed to the reduced graphene oxide sheets can function as an electron collector and transporter to lengthen the lifetime of the charge carriers, improving the whole photocatalytic activity. The reaction kinetics, possible degradation pathway, and catalyst stability, as well as the roles of ZnFe2O4 and Ag2WO4 in photoreaction, were comprehensively studied. The obtained results indicate that the prepared magnetic and effective catalytic materials could be potentially applied in environmental organic pollutants purification. |