首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and properties of Bi(Zn½Ti½)O3-modified Pb(Zr,Ti)O3 piezo-/ferroelectric ceramics around the ternary morphotropic phase boundary
Authors:Yujuan Xie  Bi-Xia Wang  Neha Claire  Zuo-Guang Ye
Affiliation:Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, Canada
Abstract:To develop high-performance piezo-/ferroelectric materials, Bi(Zn½Ti½)O3–PbZrO3–PbTiO3 (BZT–PZ–PT) ternary solid solution with compositions around the morphotropic phase boundary (MPB) is synthesized by solid-state reaction. The crystal structure and electric properties are investigated systematically by X-ray powder diffraction (XRD), dielectric spectroscopy, and ferroelectric and piezoelectric measurements. On the basis of the results of the XRD, dielectric and ferroelectric measurements, the pseudo-binary phase diagram of the yBi(Zn½Ti½)O3–(1 − y)[(1 − x)PbZrO3xPbTiO3] system has been constructed for three series, namely, y = 0.05, 0.10, and 0.15. It is found that the introduction of BZT into the PZT system makes the paraelectric to ferroelectric phase transition more diffuse, brings the MPB to a lower PT content, and enlarges the MPB region. The best properties with an improved dielectric constant ε' = 1248, and a large remnant polarization Pr = 33 μC/cm2, as well as a relatively high TC = 286°C, and a high coercive field Ec = 23 kV/cm was achieved in the y = 0.15 series with MPB composition x = 0.425, making it a promising material for high-power piezoelectric applications.
Keywords:dielectric constant  morphotropic phase boundary  piezoelectric materials/properties  solid solutions  synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号