首页 | 本学科首页   官方微博 | 高级检索  
     


High Na+ conducting Na3Zr2Si2PO12/Na2Si2O5 composites as solid electrolytes for Na+ batteries
Authors:Bandaru Santhoshkumar  Mahendra Birmaram Choudhary  Anup Kumar Bera  Seikh Mohammad Yusuf  Manasi Ghosh  Bholanath Pahari
Affiliation:1. School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa, India;2. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Homi Bhabha National Institute, Mumbai, Maharashtra, India;3. Physics Section, MMV, Benaras Hindu University, Varanasi, Uttar Pradesh, India

Abstract:Sodium superionic conductor Na3Zr2Si2PO12 (NZSP) is a promising material as a solid electrolyte for sodium-ion batteries. The highest conductivity of ~1.0 mS/cm at room temperature (RT) was reported for the compound with a Na content of approximately 3.3 per formula unit (f. u.) and when the material is synthesized with a final sintering temperature ≥1220°C. Herein, we propose a new synthesis method to enhance the conductivity of the NZSP by liquid-phase sintering with the optimum amount of additive of amorphous-Na2Si2O5. In this regard, a series of composite materials were prepared by mixing Na3Zr2Si2PO12 with amorphous-Na2Si2O5 (NZSP/NS-x wt.%; with = 0.0, 2.5, 5.0, 7.5, 10.0) and sintering at a lower temperature of 1150°C. Enhanced conductivity of 1.7 mS/cm at RT has been achieved for the Na3Zr2Si2PO12/Na2Si2O5-5.0 wt.% (NZSP/NS-5.0) composite. The effects of additives on the NZSP phase formation, microstructure, and ion conductivity have been investigated by XRD, MAS NMR, SEM, and impedance spectroscopy. Our study demonstrates that the higher conductivity of the NZSP/NS-5.0 composite is caused by the combined effect of increased Na content in the NZSP phase (by diffusion of Na+ ions from the liquid phase of NS to bare NZSP phase), higher density, and microstructures with lesser pores.
Keywords:Liquid-phase sintering  Na-ion conductivity  NASICON composite  sodium batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号