首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles
Authors:Yong-Gang Lei   Ya-Ling He   Rui Li  Ya-Fu Gao
Affiliation:aState Key Laboratory of Multiphase Flow in Power Engineering, School of Energy & Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
Abstract:Numerical simulations were carried out to study the impacts of various baffle inclination angles on fluid flow and heat transfer of heat exchangers with helical baffles. The simulations were conducted for one period of seven baffle inclination angles by using periodic boundaries. Predicted flow patterns from simulation results indicate that continual helical baffles can reduce or even eliminate dead regions in the shell side of shell-and-tube heat exchangers. The average Nusselt number increases with the increase of the baffle inclination angle α when α < 30°. Whereas, the average Nusselt number decreases with the increase of the baffle inclination angle when α > 30°. The pressure drop varies drastically with baffle inclination angle and shell-side Reynolds number. The variation of the pressure drop is relatively large for small inclination angle. However, for α > 40°, the effect of α on pressure drop is very small. Compared to the segmental heat exchangers, the heat exchangers with continual helical baffles have higher heat transfer coefficients to the same pressure drop. Within the Reynolds number studied for the shell side, the optimal baffle inclination angle is about 45°, with which the integrated heat transfer and pressure drop performance is the best. The detailed knowledge on the heat transfer and flow distribution in this investigation provides the basis for further optimization of shell-and-tube heat exchangers.
Keywords:Heat transfer   Inclination angle   Helical baffle   Three-dimensional computation   Pressure drop   Optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号