首页 | 本学科首页   官方微博 | 高级检索  
     


Flow-through and flow-by porous electrodes of nickel foam Part III: theoretical electrode potential distribution in the flow-by configuration
Authors:S Langlois  F Coeuret
Affiliation:(1) Laboratoire de Génie des Procédés, CNRS-ENSCR, Avenue du Général Leclerc, 35700 Rennes Beaulieu, France
Abstract:This paper deals with the theoretical potential distribution within a flow-by parallelepipedic porous electrode operating in limiting current conditions in a two-compartment electrolytic cell. The model takes into account the influence of the counter-electrode polarization and of the separator ohmic resistance. The results show that the design of the porous electrode requires the knowledge of the solution potential distribution within the whole cell volume.Nomenclature a c specific surface area per unit volume of electrode - C 0 entrance concentration (y=0) - C s exit concentration (y=y 0) - E electrode potential (=phgr M phgr S ) - E o equilibrium electrode potential - F Faraday number - i current density - 
$$\bar k_d $$
mean mass transfer coefficient - K parameter a ea zFi oa/(gammaa RT)]1/2 - L porous electrode thickness - n number of terms in Fourier serials - P specific productivity - Q volumetric flow-rate - umacr mean flow velocity based on empty channel - V constant potential - V R electrode volume - x thickness variable - X conversion - y length variable - y 0 porous electrode length - z number of electrons in the electrochemical reaction Greek symbols agr parameter 
$$ = zF\bar k_d a_e C_0 /\gamma _c ]$$
- beta parameter 
$$ = \bar k_d a_e /\bar u]$$
- gamma ionic electrolyte conductivity in pores - phgr S solution potential - phgr M matrix potential (phgr M = constant) - lambda parameter =npgr/y 0 - mgr parameter =lambda+K] - eegr overpotential Suffices a anodic - c cathodic - eq equilibrium - s separator - S solution
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号