首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of Structural and Electrical Properties of B-Site Complex Ion (Mg1/3Nb2/3)4+-Modified High-Curie-Temperature BiFeO3-BaTiO3 Ceramics
Authors:Xiujuan Zhou  Changrong Zhou  Qin Zhou  Huabin Yang  Zhenyong Cen  Jun Cheng  Lei Cao  Qiaolan Fan
Affiliation:1. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People’s Republic of China
2. Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People’s Republic of China
Abstract:B-site complex ion (Mg1/3Nb2/3)-modified high-temperature ceramics 0.71BiFeO3-0.29BaTi1?x (Mg1/3Nb2/3) x O3 (BF-BTMNx) have been fabricated by the conventional solid-state reaction method. The compositional dependence of the?phase structure, electrical properties, and depolarization temperature of the ceramics was studied. The main phase structure of BF-BTMNx ceramics is perovskite phase with pseudocubic symmetry. The experimental results show that the dielectric and piezoelectric properties, and temperature stability strongly depend on the (Mg1/3Nb2/3)4+ content. The optimum (Mg1/3Nb2/3) content enhances the piezoelectric properties, Curie temperature, and depolarization temperature. The ceramic with x = 1% exhibited enhanced electrical properties of d 33 = 158 pC/N and k p = 0.322, combined with high-temperature stability with Curie temperature of T c = 453°C and depolarization temperature of T d = 400°C. These results show that the ceramic with x = 1% is a promising lead-free high-temperature piezoelectric material.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号