首页 | 本学科首页   官方微博 | 高级检索  
     

一种超模糊熵ULPCNN图像自动分割新方法
引用本文:刘勍,许录平,马义德,苏哲,王勇. 一种超模糊熵ULPCNN图像自动分割新方法[J]. 西安电子科技大学学报(自然科学版), 2010, 37(5): 817-824. DOI: 10.3969/j.issn.1001-2400.2010.05.008
作者姓名:刘勍  许录平  马义德  苏哲  王勇
作者单位:(1. 西安电子科技大学 电子工程学院,陕西 西安710071;2. 天水师范学院 物理与信息科学学院,甘肃 天水741001;3. 兰州大学 信息科学与工程学院,甘肃 兰州730000)
基金项目:国家高技术研究发展计划863基金资助项目,国家自然科学基金资助项目,高等学校博士学科点专项科研基金资助项目,甘肃省自然科学基金计划资助项目,天水师范学院"青蓝"人才工程基金 
摘    要:为了自动地对图像进行二值分割,提出了一种新的自适应迭代全局阈值图像分割算法.首先对二维超模糊集隶属函数进行了自适应修正,并将其引入到图像超模糊熵概念中; 然后从适应图像分割角度,将传统脉冲耦合神经网络模型改进为具有单调指数上升阈值函数的ULPCNN抑制捕获模型; 最后把ULPCNN与最大超模糊熵判据相结合对图像进行自动分割,并与基于最大香农熵、最小交叉熵及最小模糊熵准则的ULPCNN分割方法作了比较.理论分析和实验结果表明,该方法能自动确定迭代次数和选取最佳阈值,对图像目标划分清晰,细节保持较好,改善了图像的分割性能.

关 键 词:图像分割  最大超模糊熵  ULPCNN  阈值函数  抑制捕获  
收稿时间:2009-06-29

Automated image segmentation using the ULPCNN model with ultra-fuzzy entropy
LIU Qing,XU Lu-ping,MA Yi-de,SU Zhe,WANG Yong. Automated image segmentation using the ULPCNN model with ultra-fuzzy entropy[J]. Journal of Xidian University, 2010, 37(5): 817-824. DOI: 10.3969/j.issn.1001-2400.2010.05.008
Authors:LIU Qing  XU Lu-ping  MA Yi-de  SU Zhe  WANG Yong
Affiliation:(1. School of Electronic Engineering, Xidian Univ., Xi'an  710071, China;2. School of Physics & Information Science, Tianshui Normal Univ., Tianshui  741001, China;3. School of Information Sci. & Eng., Lanzhou Univ., Lanzhou  730000, China)
Abstract:In order to process the binary segmentation of an image automatically, a new adaptive iterative image segmentation algorithm with the property of global threshold is proposed. Firstly, the two-dimensional ultra-fuzzy sets membership function, which is adaptively modified, is introduced into the concept of image ultra-fuzzy entropy. Secondly, the traditional pulse coupled neural networks (PCNN) model is improved to obtain the restraining capture Unit-Linking PCNN model with the monotony exponential raised threshold function from the point of view of image segmentation. Finally, the improved ULPCNN is combined with the criterion of maximum ultra-fuzzy entropy to process image segmentation automatically. A comparison is made between this algorithm and ULPCNN segmentation methods based on the criteria of maximum Shannon entropy, minimum cross entropy and minimum fuzzy entropy. Theoretical analysis and experimental simulations show that the proposed algorithm automatically determines the number of iterative times, chooses the best threshold, separates the objects in the image clearly, preserves most of the details, and enhances the performance of image segmentation.
Keywords:ULPCNN
本文献已被 万方数据 等数据库收录!
点击此处可从《西安电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西安电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号