首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of variations in incident heat flux when using cone calorimeter test data for prediction of full‐scale heat release rates of polyurethane foam
Authors:Luke D Robson  David A Torvi  Matthew R Obach  Elizabeth J Weckman
Affiliation:1. Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada;2. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
Abstract:The development of methods to predict full‐scale fire behaviour using small‐scale test data is of great interest to the fire community. This study evaluated the ability of one model, originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project, to predict heat release rates. Polyurethane foam specimens were tested in the furniture calorimeter using both centre and edge ignition locations. Input data were obtained using cone calorimeter tests and infrared video‐based flame area measurements. Two particular issues were investigated: how variations in incident heat flux in cone calorimeter tests impact heat release rate predictions, and the ability of the model to predict results for different foam thicknesses. Heat release rate predictions showed good agreement with experimental results, particularly during the growth phase of the fire. The model was more successful in predicting results for edge ignition tests than for centre ignition tests and in predicting results for thinner foams. Results indicated that because of sensitivity of the burning behaviour to foam specimen geometry and ignition location, a single incident heat flux could not be specified for generating input for the CBUF model. Potential methods to determine appropriate cone calorimeter input for various geometries and ignition locations are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:furniture calorimeter  fire testing  cone calorimeter  fire modelling  scaling  polyurethane foam
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号