首页 | 本学科首页   官方微博 | 高级检索  
     


Inelastic restrained distortional buckling of continuous composite T-beams
Authors:Zora Vrcelj
Affiliation:Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
Abstract:This paper develops a method of inelastic buckling analysis of thin-walled sections to study buckling characteristics of single span and two-span composite T-section beams in the inelastic range of structural response. The method is based on a bubble-augmented spline finite strip method, developed elsewhere by the authors, and confirmed as both accurate and efficient for the elastic buckling analysis of thin-walled structural members and plates. The method admits both flexural and membrane buckling deformations and it allows for consideration of structures with intermediate supports and a variety of boundary conditions that may be prescribed at the ends of plate assembly. The analysis includes the so-called Tendon Force Concept developed at Cambridge University for residual stresses caused by the process of fabrication, and the non-linear stress-strain properties of the structural steel from which the joist section is made. The inelastic restrained distortional buckling (RDB) of continuous composite T-section beams under transverse loading and moment gradient is investigated, and conclusions are drawn that address the influence of geometry, residual stresses, member length, the rigid restraint provided by the concrete and the degree of reinforcement in the concrete element.
Keywords:Continuous composite beams  Inelastic buckling  Plate girders  Residual stresses  Restrained distortional buckling  Spline finite strip method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号