首页 | 本学科首页   官方微博 | 高级检索  
     


Chain flexibility versus molecular entanglement response to rubbing deformation in designing poly(oxadiazole-naphthylimide)s as liquid crystal orientation layers
Authors:Andreea Irina Barzic  Radu Dan Rusu  Iuliana Stoica  Mariana Dana Damaceanu
Affiliation:1. “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
2. Faculty of Physics, “Alexandru Ioan Cuza” University, 11 Carol I Bdv, 700506, Iasi, Romania
Abstract:Four poly(oxadiazole-imide)s containing naphthalene rings, with different flexibility and molecular weight, are investigated with respect to their rheological properties to establish the optimal processing conditions from solution phase to film state for liquid crystal orientation purposes. The film uniformity and strength are determined by monitoring the flow behavior and chain entanglements. The solution rheological data are in agreement with film tensile testing, revealing that higher molecular weight favors chain entanglements and implicitly the film mechanical resistance. In order to analyze the suitability of these films as alignment layers their surface is patterned by rubbing with two types of velvet. Liquid crystal alignment of 4′-pentyl-4-biphenylcarbonitrile nematic is tested by polarized light microscopy. The resulting behavior is correlated with the polyimide malleability and characteristics of the textile fibers, namely their polarity, size, and mechanical features. The competitive effects between chain flexibility and entanglements, together with the interactions occurring between the polymer and velvet are analyzed in order to explain the surface regularity, which influences the uniformity of the liquid crystal alignment. The contrast between dark and bright states recorded on the liquid crystal cell indicates that some of these polynaphthalimides are promising candidates for liquid crystal display devices.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号