首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态加权LS-SVM的网络流量混沌预测
引用本文:刘百芬. 基于动态加权LS-SVM的网络流量混沌预测[J]. 电视技术, 2013, 37(7)
作者姓名:刘百芬
作者单位:华东交通大学电气与电子工程学院,江西南昌,330013
基金项目:国家自然科学基金项目资助
摘    要:网络流量是具有复杂非线性、不确定时变性的混沌时间序列.为提高标准最小二乘支持向量机的预测精度与自适应性,提出一种基于动态加权最小二乘支持向量机的网络流量混沌预测方法.该方法在标准LS-SVM回归机的训练样本误差设置时间权,增强对非线性样本的逼近能力.然后结合滚动窗与迭代求逆法实现模型动态在线校正,进而克服网络变化时的累积误差.仿真实验结果表明,相对常规LS-SVM,该模型能降低预测误差、减少计算时间,实现高精度实时混沌流量估计.

关 键 词:网络流量  加权最小二乘支持向量机  迭代求逆  动态模型
收稿时间:2012-08-18
修稿时间:2012-09-21

Chaotic Prediction for Network Traffic Based on Dynamic Weighted Least Squares Support Vector Maehine
liubaifen. Chaotic Prediction for Network Traffic Based on Dynamic Weighted Least Squares Support Vector Maehine[J]. Ideo Engineering, 2013, 37(7)
Authors:liubaifen
Affiliation:East China Jiaotong University
Abstract:Network traffic is a chaotic time series data of complex nonlinear, indefinitely time-varying. In order to improve the accuracy and adaptation of standard least square support vector machine, a network traffic prediction model is proposed based on dynamic weighted least squares support vector machine. In this model, the time weighting factors are set up in standard LS-SVM, enhancing approximation ability of nonlinear sample, and suppressing singularity of time series. Then, the data in sliding time window, iterative solution is used to updates the traffic model in terms of cumulative error by the change of network. The simulation results show that, compared with traditional algorithm, the proposed model is able to decrease error of forecasting and realize the real-time estimation of network traffic.
Keywords:network traffic   weighted least squares support vector machine   iterative solution   dynamic model
本文献已被 万方数据 等数据库收录!
点击此处可从《电视技术》浏览原始摘要信息
点击此处可从《电视技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号