Fatigue of beta titanium alloy at 20, 482 and 648 °C |
| |
Authors: | P. A. SOLIMINE C. J. LISSENDEN |
| |
Affiliation: | Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 USA |
| |
Abstract: | Fatigue life of fibrous metal matrix composites is limited by the distribution of fibre strengths, the fibre‐matrix interfacial strength, and the fatigue resistance of the matrix. The aim of this work is to provide fatigue results for a beta titanium alloy over a range of temperatures and stresses that can be used as input for predicting fatigue life of a titanium matrix composite. Stress controlled tests having fatigue ratios between ?1 and ?0.2 were conducted on a limited number of samples machined from unreinforced laminated Ti‐15Mo‐3Al‐2.7Nb‐0.2Si (TIMETAL®21S) sheets to represent as closely as possible the in situ matrix material. Stress control was used to enable quantification of strain ratcheting for tensile mean stresses and a fast loading rate was used to minimize time‐dependent (creep) deformation. Stress amplitude‐life data at 20, 482 and 648 °C for fully reversed loading are well fit by a power law. Normalizing the stress amplitude with respect to the power law coefficient appears to account for the temperature dependence of the S–N curves. As the tests had large strains and lives were in the low‐cycle fatigue range, strain range at the half‐life was also correlated to life. For tensile mean stress cycling at 482 and 648 °C, the rate of strain ratcheting per cycle increased to failure; shakedown was not observed. |
| |
Keywords: | beta titanium alloy fatigue hysteresis loops ratcheting shakedown tensile mean stress titanium matrix composite |
|
|