首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of Apatite Deposition onto Charged Surfaces in Aqueous Solutions Using a Quartz-Crystal Microbalance
Authors:Peixin Zhu  Yoshitake Masuda  Tetsu Yonezawa  Kunihito Koumoto
Affiliation:Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Abstract:Hydroxyapatite (HAp) deposition onto positively charged surfaces (i.e., self-assembled monolayers (SAMs) terminated with NH2 head groups) and negatively charged surfaces (i.e., OH-SAMs (weak) and COOH-SAMs (strong)) soaked at 50°C in aqueous supersaturated solutions (1.5 SBF, pH 7.0–7.6; SBF = simulated body fluid) was investigated using a quartz-crystal microbalance. The results revealed that the solution conditions greatly influenced the formation of HAp on the charged surfaces. In a stable supersaturated solution of simulated body fluid (1.5 SBF, pH <7.4), more strongly negative surfaces had a more powerful induction capability for the heterogeneous nucleation of HAp (COOH > OH), whereas nucleation was obviously prohibited on a positive surface (NH2-SAM). On the other hand, after the calcium phosphate particles had nucleated homogeneously in an unstable soaking solution (1.5 SBF, pH ≧7.4), adhesion of the HAp microparticles to the NH2-SAM was observed. A two-step interaction is conceivable to describe the formation of HAp on the positive NH2-SAM: At the first stage, electrostatic interaction dominates the adhesion of HAp microparticles; at the second stage, hydrogen bonds possibly form between the HAp microparticles and the amino head groups of the NH2-SAM, for a firm bonding with the substrate, and the microparticles grow progressively into a thin film. The electrophoretic behaviors of the HAp microparticles confirmed this hypothesis.
Keywords:apatite  deposition  nucleation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号