首页 | 本学科首页   官方微博 | 高级检索  
     


An integrated framework of tool path planning in 5-axis machining of centrifugal impeller with split blades
Authors:Chih-Hsing Chu  Way-Nen Huang  Yu-Wei Li
Affiliation:1. Department of Industrial Engineering and Engineering Management, National Tsing-Hua University, Hsinchu, Taiwan
Abstract:Centrifugal impeller is a complex part commonly used in aerospace, energy, and air-conditioning industries. Its manufacture involves multi-axis free form machining, a time consuming and error-prone process. Tool path planning is considered a critical issue in the process but still lacking of systematic solutions. This paper proposes a tool path planning framework for 5-axis machining of centrifugal impeller with split blades. It provides several CAM functions that assist the users to generate collision-free cutter motions with smooth tool orientations. First, the machining process is divided into four operations and the planning tasks of each operation are standardized. Second, the hub surfaces are properly decomposed, re-grouped, and re-parameterized to facilitate calculation of quality tool path with reduced cutter retraction and plunging. Finally, geometric algorithms are developed to automatically detect tool collisions and then correct the erroneous tool orientations. An optimization scheme is applied to minimize the total amount of tool posture changes after the correction. An impeller is machined with the NC codes generated from the framework. The result shows the effectiveness of this work in automating the tool path planning in 5-axis machining of highly intricate impeller.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号