Folding of the four-way RNA junction of the hairpin ribozyme |
| |
Authors: | F Walter AI Murchie DM Lilley |
| |
Affiliation: | CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, U.K. |
| |
Abstract: | The hairpin ribozyme consists of two loop-carrying duplexes (called A and B) that are adjacent arms of a four-way junction in its natural context in the viral RNA. We have shown previously that the activity of the ribozyme is strongly influenced by the structure adopted by the junction. In this study, we have used fluorescence resonance energy transfer to analyze the conformation and folding of the isolated four-way junction. Like other four-way RNA junctions, in the absence of added metal ions this junction adopts a square configuration of coaxially stacked arms, based on A on D and B on C stacking. Upon addition of magnesium ions, the junction undergoes an ion-induced transition to an antiparallel conformation. The data are consistent with folding induced by the binding of a single ion, with an apparent association constant in the range of 2000 M-1. Other divalent metal ions (calcium or manganese) can also induce this change in structure; however, sodium ions are unable to substitute for these ions, and are slightly inhibitory with respect to the transition. The loop-free hairpin junction adopts the same stacking conformer as the full ribozyme, but forms a more symmetrical X-shaped structure. In addition, the apparent stoichiometry of structural ion binding is lower for the isolated junction, and the affinity is considerably lower. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|