首页 | 本学科首页   官方微博 | 高级检索  
     


THE EFFECT OF CATHODIC POLARIZATION ON CORROSION FATIGUE OF A HIGH STRENGTH STEEL IN SALT WATER
Authors:Y-Z Wang  R Akid  K J Miller
Affiliation:SIRIUS, University of Sheffield, Mappin Street, Sheffield S1 3JD, England
Abstract:Abstract— Corrosion fatigue crack growth rates in high strength steel are often increased when a large cathodic polarization is applied. The corrosion fatigue mechanism in this case is generally considered to be due to hydrogen embrittlement. In the present study the crack growth process was carefully monitored by taking replicas from initially smooth specimens of a high strength steel under fully reversed push-pull loading while: (1) exposed to laboratory air, (2) immersed in a 0.6 M sodium chloride (NaCl) solution at open circuit potential (OCP) and (3) with an applied cathodic potential of —1250 mV (SCE). It is shown that the effect of cathodic polarization is dependent on the applied stress level and the nature of the cracking process, which in turn, is related to the sue of the crack. For stress levels at or below the in-air fatigue limit, failure did not occur for cathodically polarised specimens despite the number of loading cycles being 10 times that of the lifetime of identical tests in solution at the open circuit potential. At stress levels above the in-air fatigue limit the reduction in fatigue endurance caused by the presence of the corrosive environment can be partially recovered through cathodic polarization. The role of non-metallic inclusions in the cracking process under various exposure conditions is discussed, and a cracking mechanism is proposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号