首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of magnetostriction on fracture of a soft ferromagnetic medium with a crack-like flaw
Authors:Y. P. WAN  D. N. FANG  A. K. SOH   K. C. HWANG
Affiliation:Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
Abstract:The magnetic‐induction field in the vicinity of an elliptical inclusion embedded in an infinite soft ferromagnetic medium is determined based on complex potential theory. By using a constitutive relation of magnetostriction for isotropic materials, the stress field in the vicinity of an elliptical flaw is obtained. Furthermore, the stress field at the tip of a slender elliptical crack is determined for the case in which only an external magnetic field perpendicular to the major axis of the ellipse is applied at infinity. The results indicate that the stress field in the neighbourhood of the tip is governed by the magnetostriction and permeability of the soft ferromagnetic material. The induction magnetostrictive modulus is a key parameter in determining which of the two mechanisms, i.e., magnetostriction and magnetic‐force‐induced deformation, is dominant in determining the stress field in the neighbourhood of the tip of a crack‐like flaw. With regard to the influence of the magnetic field on the apparent toughness of a soft ferromagnetic body with a crack‐like flaw, soft ferromagnetic materials can be roughly divided into two categories: one possesses a large induction magnetostrictive modulus and the other has a small modulus. An approximate criterion for categorizing the materials is presented. For the benefit of engineering design, the expressions of the stress‐intensity factor for these two categories of soft ferromagnetic materials are presented. The results show that the stress‐intensity factor is affected not only by the flaw geometry, but also by the permeability of the medium inside the flaw.
Keywords:crack-like flaw    magnetic force    magnetostriction    soft ferromagnetic materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号