首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络和Transformer网络的鸟声识别
作者姓名:王基豪  周晓彦  李大鹏  韩智超  王丽丽
作者单位:南京信息工程大学电子与信息工程学院, 江苏南京 210044
摘    要:针对传统鸟声识别算法中特征提取方式单一、分类识别准确率低等问题,提出一种结合卷积神经网络和Transformer网络的鸟声识别方法。该方法综合考虑网络局部特征学习和全局上下文依赖性构造,从原始鸟声音频信号中提取短时傅里叶变换(Short Time Fourier Transform,STFT)语谱图特征,将其输入到卷积神经网络(ConvolutionalNeural Network,CNN)中提取局部频谱特征信息,同时提取鸟声信号的对数梅尔特征及一阶差分、二阶差分特征用于合成梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)混合特征向量,将其输入到Transformer网络中获取全局序列特征信息,最后融合所提取的特征可得到更丰富的鸟声特征参数,通过Softmax分类器得到鸟声识别结果。在Birdsdata和xeno-canto鸟声数据集上进行实验,平均识别准确率分别达到了97.81%和89.47%。实验结果表明该方法相较于其他现有的鸟声识别模型具有更高的识别准确率。

关 键 词:鸟声识别  特征提取  卷积神经网络(CNN)  Transformer网络
收稿时间:2022-04-29
修稿时间:2022-08-17
点击此处可从《声学技术》浏览原始摘要信息
点击此处可从《声学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号