首页 | 本学科首页   官方微博 | 高级检索  
     


Gravimetric measurement of solid and liquid fuel burning rate near and at the low oxygen extinction limit
Affiliation:1. beth.weckman@uwaterloo.ca & ejweckman@uwaterloo.ca;2. atrouve@umd.edu;3. luke.bisby@icloud.com;4. Bart.Merci@UGent.be;1. School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch WA 6150, Australia;2. Dyno Nobel Asia Pacific Pty Ltd, Mt Thorley, NSW 2330, Australia;3. Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA;1. Fire Safety Engineering Group, University of Greenwich, London SE10 9LS UK;2. Western Norway University of Applied Sciences, 5528 Haugesund, Norway
Abstract:A precision mass balance coupled with a variable oxygen flow tunnel/nozzle enables us to measure the burning rate of solid and liquid fuels as a function of ambient oxygen percentage all the way to the extinction limit. Two sample configurations have been studied. The first is a liquid fueled wick flame (ethanol tea lamp). The total burning rate (mass/time) is measured as a function of wick length and oxygen percentage. Near the low oxygen limit, limit-cycle flame oscillation has been found that can last for many minutes to hours. The averaged mass burning rate of the oscillatory flame is about one-half that of the steady flame occurring at slightly higher oxygen. In the second configuration, local burning rate (mass/area/time) of poly(methyl methacrylate) spherical shell samples have been measured in the flame stabilization zone. Each sample has a different amount of heat loss and a different oxygen limit. The critical burning rate at their respective oxygen limits are different. This implies that critical burning rate is not a property of the material alone and it should not be used as the only criterion to judge the extinction or the ignition of materials.
Keywords:Critical burning rate  Local burning rate  Near limit oscillation  Oxygen index
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号