首页 | 本学科首页   官方微博 | 高级检索  
     

异构多目标差分-动态窗口算法 及其在移动机器人中的应用
引用本文:王洪斌,刘德垚,郑维,呼忠权,杨春达. 异构多目标差分-动态窗口算法 及其在移动机器人中的应用[J]. 控制与决策, 2023, 38(12): 3390-3398
作者姓名:王洪斌  刘德垚  郑维  呼忠权  杨春达
作者单位:燕山大学 电气工程学院,河北 秦皇岛 066000;辽宁工程技术大学 电气与控制工程学院,辽宁 阜新 123000
基金项目:国家自然科学基金项目(62203379);河北省自然科学基金项目(F2021203083,F2021203104);河北省教育厅高等学校科技计划项目(QN2021138);河北省杰出青年基金项目(F2021203033);河北省创新能力提升计划项目(22567619H).
摘    要:为了实现在多移动机器人和多窄通道的复杂动态环境中机器人的节能运动规划,提出异构多目标差分-动态窗口法(heterogeneous multi-objective differential evolution-dynamic window algorithm,HMODE-DWA).首先,建立行驶时间、执行器作用力和平滑度的3目标优化模型,设计具有碰撞约束的异构多目标差分进化算法来获得3个目标函数的最优解,进而在已知的静态环境中获得帕累托前沿,利用平均隶属度函数获得起点与终点间最优的全局路径;其次,定义基于环境缓冲区域的模糊动态窗口法使机器人完成动态复杂环境中避障,利用所提出的HMODE-DWA算法动态避障的同时实现节能规划.仿真和实验结果表明,所提出的混合路径规划控制策略能够有效降低移动机器人动态避障过程中的能耗.

关 键 词:节能运动规划  异构多目标差分  动态窗口法  动态复杂环境

Heterogeneous multi-objective differential evolution-dynamic window algorithm and application for energy-saving motion planning of mobile robot
WANG Hong-bin,LIU De-yao,ZHENG Wei,HU Zhong-quan,YANG Chun-da. Heterogeneous multi-objective differential evolution-dynamic window algorithm and application for energy-saving motion planning of mobile robot[J]. Control and Decision, 2023, 38(12): 3390-3398
Authors:WANG Hong-bin  LIU De-yao  ZHENG Wei  HU Zhong-quan  YANG Chun-da
Affiliation:School of Electrical Engineering,Yanshan University,Qinhuangdao 066000,China; Faculty of Electrical and Control Engineering,Liaoning University of Engineering and Technology,Fuxin 123000,China
Abstract:Aiming at the problem of energy-saving motion path planning of the mobile robot in a complex unknown environment with mobile robots and multiple narrow channels, a hybrid algorithm based on the heterogeneous multi-objective differential evolution-dynamic window algorithm (HMODE-DWA) is proposed. Firstly, a three-objective optimization model of travel time, actuator force and smoothness is established. Secondly, a heterogeneous multi-objective differential evolution algorithm with collision constraints is designed to optimize three objective functions to obtain the Pareto frontier in a known static envoronment, and then, the optimal global path can be obtained using the average membership function. Thirdly, the robot uses the fuzzy dynamic window algorithm based on the environment buffer area to avoid obstacles in the unknown dynamic and complex environment. The global path nodes have been planned and used as the target points of the local planning for the robots to dynamically avoid obstacles and obtain the global optimal path. Finally, simulation experiments are given to verify the effectiveness of the proposed algorithm. The simulation results show that the proposed hybrid path planning control strategy can obtain the optimal global path and reduce the energy consumption during the dynamic obstacle avoidance process of mobile robots.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号