首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal performance augmentation using water based Al2O3-gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation
Affiliation:1. Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran;2. Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran;3. Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada;1. Chemical Engineering Department, VNIT, Nagpur 440010, India;2. Chemical Engineering Department, National Institute of Technology (NIT), Warangal 506004, India
Abstract:Shell and tube heat exchanger is one of the most prevalent heat exchangers with a wide variety of industrial applications, i.e., power plants, chemical processes, marine industries, HVAC systems, cooling of hydraulic fluid and engine oil in heavy duty diesel engines and the like specifically where a need to heat or cool a large fluid volume exist and also higher-pressure use. In the present study, the effect of using Al2O3-water nanofluid on thermal performance of a commercial shell and tube heat exchanger with segmental baffles is assessed experimentally. For this purpose, Al2O3-gamma nanoparticles with 15 nm mean diameter (99.5% purity) and Sodium Dodecyl Benzene Sulphonate (SDBS) as surfactant are used to make aqueous Al2O3 nanofluid at three various volume fractions of nanoparticles (φ = 0.03, 0.14 and 0.3%). Indeed, in this paper the effect of some parameters of hot working fluid such as Reynolds number and volume concentration of nanoparticles on heat transfer characteristics, friction factor and thermal performance factor of a shell and tube heat exchanger under laminar flow regime is investigated. The results indicate a substantial increment in Nusselt number as well as the overall heat transfer coefficient of heat exchanger by enhancement of Reynolds number and it can be seen that, at a certain Reynolds number, heat transfer characteristics of heat exchanger increase as the nanoparticles volume concentration increases. Outcomes of the heat transfer evaluation demonstrate that applying nanofluids instead of base fluid lead to increment of Nusselt number up to 9.7, 20.9 and 29.8% at 0.03, 0.14 and 0.3 vol%, respectively. Likewise it is seen that at mentioned nanoparticles volume fractions, overall heat transfer coefficient of heat exchanger enhances around 5.4, 10.3 and 19.1%, respectively. In term of pressure drop, a little penalty is found by using nanofluid in the test section. Eventually a thermal performance assessment on the heat exchanger was conducted. According to the analysis results, utilizing nanofluid at minimum and maximum nanoparticles volume fractions (φ = 0.03 and 0.3%) results in average augmentation of around 6.5% and 18.9% in thermal performance factor (η) of the heat exchanger compared to the base liquid, respectively.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号