首页 | 本学科首页   官方微博 | 高级检索  
     


Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application
Authors:Byeong-Hee Park
Affiliation:Department of Chemical Engineering, Kongju National University, 275 Budae-dong, Seobuk-gu, Cheonan-si, Chungnam-do, 331-717, South Korea
Abstract:It is very important to increase the wetted surface area of a carbon electrode for high capacitive deionization performance. To increase the wettability of a carbon electrode, we fabricated carbon electrodes by using water-soluble polymer binder, polyvinyl alcohol (PVA). The electrochemical properties of the PVA-bonded carbon electrode were compared with another that was prepared using hydrophobic binder, polyvinylidene fluoride (PVdF). Electrochemical methods - cyclic voltammetry, chronoamperometry, and electrical impedance spectroscopy - were used to characterize the electrochemical properties of the electrodes. As might be expected, it was confirmed that the PVA-bonded electrode was more wettable than the PVdF-bonded one, based on contact angle measurements. From the cyclic voltammetric analysis, we found that the specific capacitance was 74.4-80.3 Fg−1 for the PVdF-bonded electrode and 89.6-99.8 Fg−1 for the PVA-bonded electrode, depending on the potential, indicating a 13.3-30.1% increase in specific capacitance. It was observed that the ac-signal penetrated micropores of the PVA-bonded carbon electrode more deeply than the PVdF-bonded one, resulting in a higher capacitance. This was attributed to the fact that the ac-signal was able to charge more inner surface sites because micropores in the PVA-bonded electrode could be wetted due to the PVA binder.
Keywords:Capacitive deionization  Specific capacitance  Water-soluble polymer  Cyclic voltammetry  Impedance spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号