首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical tuning of titania nanotube morphology in inhibitor electrolytes
Authors:VC Anitha
Affiliation:Amrita Centre for Nanosciences, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Elamakkara P O, Cochin 682 041, Kerala, India
Abstract:The electrochemical behavior of fluorine containing electrolytes and its influence in controlling the lateral dimensions of TiO2 nanotubes is thoroughly investigated. Potentiostatic anodization is carried out in three different electrolytes, viz., aqueous hydrofluoric acid (HF), HF containing dimethyl sulphoxide (DMSO) and HF containing ethylene glycol (EG). The experiments were carried out over a broad voltage range from 2 to 200 V in 0.1-48 wt% HF concentrations and different electrolytic compositions for anodization times ranging from 5 s to 70 h. The chemistry that dictates how the nature of electrolytes influences the morphology of nanotubes is discussed. Electrochemical impedance spectra were recorded for varying compositions of all the electrolytes. It was observed that composition of the electrolyte and its fluorine inhibiting nature has significant impact on nanotube formation as well as in controlling the aspect ratio. The inhibiting nature of EG is helpful in holding fluorine at the titanium anode, thereby allowing controlled etching at appropriate voltages. Thus our study demonstrates that HF containing EG is a promising electrolytic system providing wide tunability in lateral dimensions and aspect ratio of TiO2 nanotubes by systematically varying the anodization voltage and electrolyte composition.
Keywords:Anodization  TiO2 nanotubes  Pore diameter  Electrochemical impedance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号