首页 | 本学科首页   官方微博 | 高级检索  
     


Structural and electrochemical characterisation of [Pd(salen)]-type conducting polymer films
Authors:J Fonseca  K Biernacki  SJ Gurman  AR Hillman
Affiliation:a REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
b Department of Chemistry, University of Leicester, Leicester LE1 7 RH, UK
c Department of Physics, University of Leicester, Leicester LE1 7 RH, UK
Abstract:The oxidative polymerisation of four structurally-related Pd(salen)] complexes and characterisation of the resulting polymeric films by cyclic voltammetry (CV), UV-visible transmission spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) is reported. The voltammetric technique gives insight into the electrochemical properties of the polymeric films whereas UV-visible spectroscopy is used to characterise the electronic structure of Pd electroactive films, of particular relevance to the type of charge carriers. X-ray techniques (supported by density functional theory, DFT) provide information related to composition and structural features of Pd(salen)] precursors and the resulting polymers. Characterisation of polyPd(salen)] films shows that the electrochemical response of these supramolecular systems is ligand-based and dependent upon substituents in the diimine bridge and aldehyde moieties. XAS measurements near the Pd K-edge demonstrate that polymerisation of the Pd complexes does not change the coordination sphere of the Pd centre; this is consistent with the coupling of monomers units via phenyl rings. As further evidence of ligand-based electrochemical responses, polymer doping does not impart any changes at the Pd centre or its coordination sphere. Compositional analysis by XPS confirms that C: Pd, N: Pd and O: Pd surface atomic ratios do not change significantly from monomer to undoped or doped polymer, except for small variations associated with incorporation of electrolyte and solvent upon polymerisation and polymer oxidation. Overall, the data provide a picture of a polyaromatic delocalised electroactive system, in which the metal atom plays a templating (rather than electroactive) role.
Keywords:EXAFS  Spectroelectrochemistry  XPS  Modified electrode  Palladium  Salen
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号