首页 | 本学科首页   官方微博 | 高级检索  
     


Shear banding in torsion shear tests on cross-anisotropic deposits of fine Nevada sand
Affiliation:1. Department of Civil Engineering, The Catholic University of America, Washington, DC 20064, USA;2. Schnabel Services, Inc., Glen Allen, VA 23059, USA;3. Department of the Navy, Naval Sea Systems Command 05C, Washington Navy Yard, Washington, DC 20376, USA
Abstract:A series of torsion shear experiments was performed on large hollow cylinder specimens of Fine Nevada sand with major principal stress directions relative to vertical, α, varying from 0° to 90° and with the intermediate principal stress, σ2, varying from σ3 to σ1 as indicated by b=(σ2–σ3)/(σ1–σ3). The Fine Nevada sand was deposited by dry pluviation, thus producing a sand fabric with horizontal bedding planes and cross-anisotropic characteristics. The various stress conditions were achieved by varying the pressures inside and outside the hollow cylinder specimen relative to the shear stress and the vertical deviator stress according to a pre-calculated pattern. All stresses and all strains were determined from careful measurements so that analysis of the soil behavior could be made reliably. The soil behavior was determined for a pattern of combinations of α varying with increments of 22.5° from 0° to 90° and b varying with increments of 0.25 from 0.0 to 1.0. Thus, 25 test locations were established, but many tests were repeated to study the consistency of the results. The friction angles varied considerably with α and b, thus indicating the importance of the intermediate principal stress and the principal stress directions relative to the horizontal bedding planes. The observed shear bands essentially followed the expected directions, but due to the cross-anisotropy shear bands were also observed in the direction of the major principal stress in regions with high b-values. The strength variation was also influenced by the flexibility of the boundaries in these regions.
Keywords:Cross-anisotropy  Sand  shear banding  Shear strength  Three-dimensional strength  Torsion shear  True triaxial tests (IGC: D6)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号