首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation and characterization of murine clonogenic osteoclast progenitors by cell surface phenotype analysis
Authors:Y Muguruma  MY Lee
Affiliation:Department of Immunology, The Babraham Institute, Cambridge, GB. james.stevens@bbsrc.ac.uk
Abstract:MHC class I molecules bind short peptides for presentation to CD8+ T cells. The determination of the three-dimensional structure of various MHC class I complexes has revealed that both ends of the peptide binding site are composed of polar residues conserved among all human and murine MHC class I sequences, which act to lock the ends of the peptide into the groove. In the rat, however, differences in these important residues occur, suggesting the possibility that certain rat MHC class I molecules may be able to bind and present longer peptides. Here we have studied the peptide length preferences of two rat MHC class Ia molecules expressed in the TAP2-deficient mouse cell line RMA-S: RT1-A1c, which carries unusual key residues at both ends of the groove, and RT1.Aa which carries the canonical residues. Temperature-dependent peptide stabilization assays were performed using synthetic random peptide libraries of different lengths (7-15 amino acids) and successful stabilization was determined by FACS analysis. Results for two naturally expressed mouse MHC class I molecules revealed different length preferences (H2-Kb, 8-13-mer and H2-Db, 9-15-mer peptides). The rat MHC class Ia molecule, RT1-Aa, revealed a preference for 9-15-mer peptides, whereas RT1-A1c showed a more stringent preference for 9-12-mer peptides, thereby ruling out the hypothesis that unusual residues in rat MHC molecules allow binding of longer peptides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号