首页 | 本学科首页   官方微博 | 高级检索  
     

局部均匀模式描述和双加权融合的人脸识别
引用本文:任福继,李艳秋,许良凤,胡敏,王晓华. 局部均匀模式描述和双加权融合的人脸识别[J]. 中国图象图形学报, 2016, 21(5): 565-573
作者姓名:任福继  李艳秋  许良凤  胡敏  王晓华
作者单位:合肥工业大学计算机与信息学院, 合肥 230009;情感计算与先进智能机器安徽省重点实验室, 合肥 230009,合肥工业大学计算机与信息学院, 合肥 230009;情感计算与先进智能机器安徽省重点实验室, 合肥 230009,合肥工业大学计算机与信息学院, 合肥 230009;情感计算与先进智能机器安徽省重点实验室, 合肥 230009,合肥工业大学计算机与信息学院, 合肥 230009;情感计算与先进智能机器安徽省重点实验室, 合肥 230009,合肥工业大学计算机与信息学院, 合肥 230009;情感计算与先进智能机器安徽省重点实验室, 合肥 230009
基金项目:国家自然科学基金项目(61432004,61300119);安徽省自然科学基金项目(1408085MKL16)
摘    要:目的 针对LBP算法对边缘及噪声信息比较敏感,提出一种统一化的局部均值模式(ULMP)描述算子。考虑到全局和局部特征在识别上的互补性,提出一种ULMP描述和双加权融合的人脸识别方法。方法 首先利用ULMP算法获得整幅图像的编码图,接着将其分块,统计每一子块的直方图获得局部纹理特征,并结合BP神经网络得到局部分类结果。引入云模型求取不同子块的权值,对局部分类结果进行加权融合。整体纹理特征的获取是将不同子块的直方图特征串联。在得到全局和局部的分类结果后,将两者加权集成,获得最终的识别结果。结果 在ORL和Yale人脸库上进行实验,ULMP具有很好的识别性能。5幅测试样本时,在ORL库上取得了95.9%的平均识别率,分别比局部二值模式(LBP)、MCT、局部方向模式(LGP)、统一的LBP(ULBP)和局部中心二值模式(CSLBP)高11.3%、10.6%、9.5%、8.9%和3.9%;在Yale库上取得了97.4%的识别率,分别比LBP、MCT、LGP、ULBP和CSLBP高19.9%、17.7%、10.7%和0.7%。在ORL和Yale人脸库上,本文提出的双加权融合模式分别取得了98.5%和98.34%的平均识别率,高于任何单一模块。结论 本文提出的纹理提取算法ULMP,具有很好的平滑噪声及边缘信息的作用,适用于面部纹理特征的提取。利用云模型求取的权值的方法能够较好地发挥局部分类器间的集成作用,最终有效地提高了系统的整体性能。双加权融合模式是一种精确且有效的人脸识别方法,适用于静态人脸图像的匹配识别。

关 键 词:人脸识别  局部均值模式  双加权融合  云模型
收稿时间:2015-09-07
修稿时间:2015-12-16

Face recognition method based on local mean pattern description and double weighted decision fusion for classification
Ren Fuji,Li Yanqiu,Xu Liangfeng,Hu Min and Wang Xiaohua. Face recognition method based on local mean pattern description and double weighted decision fusion for classification[J]. Journal of Image and Graphics, 2016, 21(5): 565-573
Authors:Ren Fuji  Li Yanqiu  Xu Liangfeng  Hu Min  Wang Xiaohua
Affiliation:School of Computer and Information, Hefei University of Technology, Hefei 230009, China;Affective Computing and Advanced Intelligent Machines Anhui Key Laboratory, Hefei 230009, China,School of Computer and Information, Hefei University of Technology, Hefei 230009, China;Affective Computing and Advanced Intelligent Machines Anhui Key Laboratory, Hefei 230009, China,School of Computer and Information, Hefei University of Technology, Hefei 230009, China;Affective Computing and Advanced Intelligent Machines Anhui Key Laboratory, Hefei 230009, China,School of Computer and Information, Hefei University of Technology, Hefei 230009, China;Affective Computing and Advanced Intelligent Machines Anhui Key Laboratory, Hefei 230009, China and School of Computer and Information, Hefei University of Technology, Hefei 230009, China;Affective Computing and Advanced Intelligent Machines Anhui Key Laboratory, Hefei 230009, China
Abstract:
Keywords:face recognition  local mean pattern (LMP)  double weighted decision fusion  cloud model
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号