首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate determination of magnetic field gradients from four pointvector measurements. I. Use of natural constraints on vector dataobtained from a single spinning spacecraft
Authors:Kepko   E.L. Khurana   K.K. Kivelson   M.G. Elphic   R.C. Russell   C.T.
Affiliation:Inst. of Geophys. & Planetary Phys., California Univ., Los Angeles, CA;
Abstract:Cluster introduces a new generation of spacecraft that will measure the spatial gradients of the magnetic field in the Earth's magnetosphere. As gradients require knowledge of differences, small errors resulting from an inadequate knowledge of the orientations, zero levels and the scale factors of the magnetometer sensors affect the calculation of field gradients disproportionately and must be removed with high accuracy. We show that twelve calibration parameters are required for each of the spacecraft (for a total of 48 for the four spacecraft) to correctly infer the measured magnetic fields at each of the spacecraft. By application of a Fourier transform technique, some of the parameters can be recovered. We show that errors in eight of the twelve calibration parameters generate coherent monochromatic signals at the first and the second harmonics of the spin frequency in the despun data. We relate the real and the imaginary parts of the monochromatic signals to the eight calibration parameters. We then present a least squares scheme that improves the eight calibration parameters by iteration until the power of the coherent signal superimposed above the broad-band background is minimized
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号