首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机森林遥相关因子选择的月径流预报北大核心CSCD
引用本文:熊怡,周建中,贾本军,胡国华. 基于随机森林遥相关因子选择的月径流预报北大核心CSCD[J]. 水力发电学报, 2022, 41(3): 32-45. DOI: 10.11660/slfdxb.20220304
作者姓名:熊怡  周建中  贾本军  胡国华
作者单位:1.华中科技大学土木与水利工程学院430074;2.长沙理工大学水利工程学院410114;
基金项目:国家自然科学基金雅砻江联合基金项目(U1865202);国家自然科学基金重大研究计划重点支持项目(91547208)。
摘    要:流域径流过程与大尺度气候因子之间存在遥相关关系,如何从众多的水文、气象、大气环流及洋流等因子中找出与径流密切关联的因子,是中长期径流预报的一个难题。将基于贝叶斯优化的随机森林模型应用于对水文、气象、气候因子构成的高维度因子集进行因子选择,根据变量重要性评分挑选对月径流影响较大的预报因子,构建广义回归神经网络、极限学习机、支持向量回归径流预报模型。将该方法应用到金沙江流域,相较于线性相关法,基于随机森林输入因子选择的方法提高了模型泛化性能;遥相关因子的引入既实现了流域月径流高精度预报,又从物理机制上提供了支撑。

关 键 词:月径流预报  随机森林  贝叶斯优化  遥相关  金沙江

Monthly runoff prediction based on teleconnection factors selection using random forest model
XIONG Yi,ZHOU Jianzhong,JIA Benjun,HU Guohua. Monthly runoff prediction based on teleconnection factors selection using random forest model[J]. Journal of Hydroelectric Engineering, 2022, 41(3): 32-45. DOI: 10.11660/slfdxb.20220304
Authors:XIONG Yi  ZHOU Jianzhong  JIA Benjun  HU Guohua
Abstract:A teleconnection relationship exists between watershed runoff and large-scale climate indexes. For medium- and long-term runoff prediction, a major difficulty is how to pick out those that are strongly correlated with runoff from various factors such as hydrology, meteorology, atmospheric circulation, and ocean current. This study applies a random forest model based on Bayesian optimization (sequential model-based optimization for general algorithm configuration) to selecting runoff predictors from the set of high-dimensional hydrometeorological and climatic factors according to their importance scores, and constructs a general regression neural network, an extreme learning machine, and a support vector regression runoff prediction models. The method is applied to runoff predictions for the Jinsha River. Compared with those of the factor selection model based on correlation coefficients, our new prediction model using the random forest for factor selection improves the generalization capability. Meanwhile, adding appropriate teleconnection climatic factors to the prediction model inputs can help improve accuracy of monthly runoff prediction and provide physical basis for the model.
Keywords:monthly runoff prediction  random forest  Bayesian optimization  teleconnection  Jinsha River  
本文献已被 维普 等数据库收录!
点击此处可从《水力发电学报》浏览原始摘要信息
点击此处可从《水力发电学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号