首页 | 本学科首页   官方微博 | 高级检索  
     

基于生成对抗网络的自爆绝缘子检测模型设计
作者姓名:及浩然  侯春萍  杨阳  张贵峰  及泓鸥  赵艺
作者单位:1.天津大学 国际工程师学院, 天津市 南开区 300072
基金项目:国家自然科学基金国际(地区)合作与交流项目(61520106002)。
摘    要:随着输电线路的持续建设,无人机逐步代替人工成为巡线工作的主要工作方式。绝缘子在输电线路中具有重要作用,然而,因自爆绝缘子导致的事故尤为频繁,从大量的航拍图像中识别自爆绝缘子,是一个亟待解决的任务。在航拍图像中,大部分绝缘子数据均是无损绝缘子,自爆绝缘子数量较少,因而无法满足识别算法的训练要求。针对现有输电线路无人机巡检中自爆绝缘子数据量稀缺的问题,该文提出了一种基于生成对抗网络的自爆绝缘子检测模型。通过生成器和鉴别器的对抗训练,该模型仅使用无损绝缘子数据训练即能完成对自爆绝缘子的检测。在此基础上,该文优化了生成对抗网络的训练过程。通过引入指导网络,解决了生成对抗网络的模式崩塌问题,提高了对自爆绝缘子检测的召回率;通过对鉴别器的输入添加扰动,解决了生成对抗网络中的样本不均衡问题,提高了对自爆绝缘子检测的精确度。通过与其他异常检测算法的对比实验,证明了该文方法的可靠性。并通过对模型各部分的消融实验,证明了该文方法各部分的可靠性。实验结果证明,该生成对抗网络模型有效避免了传统生成对抗网络中的缺陷,完成了对自爆绝缘子的高效自动检测。

关 键 词:无人机巡检  绝缘子  异常检测  深度学习  生成对抗网络
收稿时间:2021-06-10
点击此处可从《现代电力》浏览原始摘要信息
点击此处可从《现代电力》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号