首页 | 本学科首页   官方微博 | 高级检索  
     


Indoor mould growth prediction using coupled computational fluid dynamics and mould growth model
Authors:Majeed Olaide Oladokun  Maisarah Ali  Samsul Bahrin Osman  Zhang Lin
Affiliation:1.Department of Architectural and Civil Engineering,City University of Hong Kong,Hong Kong,China;2.Department of Civil Engineering,International Islamic University, Malaysia (IIUM),Gombak, Kuala Lumpur,Malaysia;3.Department of Manufacturing and Material Engineering,International Islamic University Malaysia (IIUM),Gombak Kuala Lumpur,Malaysia;4.Division of Building Science and Technology,City University of Hong Kong,Hong Kong,China
Abstract:This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号