首页 | 本学科首页   官方微博 | 高级检索  
     


Elevational spatial compounding
Authors:PC Li  M O'Donnell
Affiliation:Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor 48109-2122.
Abstract:Spatial compounding has long been explored to reduce coherent speckle noise in medical ultrasound. By laterally translating a one-dimensional array, partially correlated measurements made at different look directions can be obtained and incoherently averaged. The lateral resolution, however, is limited by the sub-array length used for each independent measurement. To reduce speckle contrast without compromising lateral resolution, a new spatial compounding technique using two-dimensional, anisotropic arrays is proposed. This technique obtains partially correlated measurements by steering the image plane elevationally with small inclinations. Incoherent averaging is then performed by adding image magnitudes. Therefore, contrast resolution is improved only at the price of a slightly wider elevational beam. Note that although anisotropic arrays have limited steering capability in elevation, grating lobes are not considered influential since only small inclinations are needed between measurements. Simulations have been performed to show both the change in spatial resolution and the improvement in contrast resolution. Results indicated minimal increase in the correlation length both laterally and axially. It was also shown that detectability can be significantly enhanced by increasing the number of measurements or increasing the differential inclination between measurements. This technique is therefore effective for reducing speckle noise while maintaining in-plane spatial resolution. Furthermore, it demonstrates a new application of two-dimensional anisotropic arrays in spite of their limited elevational steering capability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号