首页 | 本学科首页   官方微博 | 高级检索  
     

堆栈式混合自编码器的人脸表情识别方法
引用本文:张志禹,王瑞琼,魏敏敏,周 杰. 堆栈式混合自编码器的人脸表情识别方法[J]. 计算机工程与应用, 2019, 55(13): 140-144. DOI: 10.3778/j.issn.1002-8331.1803-0398
作者姓名:张志禹  王瑞琼  魏敏敏  周 杰
作者单位:1.西安理工大学 自动化学院,西安 7100482.西安电子科技大学 机电工程学院,西安 710071
摘    要:针对进一步提高人脸表情识别率的问题,采用了一种基于深度学习的堆栈式混合自编码器(Stacked Hybrid Auto-Encoder,SHAE)的人脸表情识别方法。该方法的结构是由去噪自编码器(Denoising Auto-Encoder,DAE)、稀疏自编码器(Sparse Auto-Encoder,SAE)以及自编码器(Auto-Encoder,AE)组合而成的5层网络结构。为了增加网络的鲁棒性以及泛化能力,采用去噪自编码器对样本进行提取特征,为了对提取的特征进行降维以及进一步提取更抽象的稀疏特征,采用稀疏自编码器进行级联,来对特征进一步处理。训练过程首先由无标签的数据进行预训练和整体微调,对整个结构的权重进行初始化和更新调整,然后使用有标签的数据进行测试训练。在JAFFE和CK+两个数据集上实验显示,相较于单纯的堆栈式去噪自编码或者单纯的堆栈式稀疏自编码,该方法具有更好的识别效果。

关 键 词:人脸表情识别  堆栈式混合自编码器(SHAE)  稀疏自编码器(SAE)  去噪自编码器(DAE)  

Stacked Hybrid Auto-Encoder Facial Expression Recognition Method
ZHANG Zhiyu,WANG Ruiqiong,WEI Minmin,ZHOU Jie. Stacked Hybrid Auto-Encoder Facial Expression Recognition Method[J]. Computer Engineering and Applications, 2019, 55(13): 140-144. DOI: 10.3778/j.issn.1002-8331.1803-0398
Authors:ZHANG Zhiyu  WANG Ruiqiong  WEI Minmin  ZHOU Jie
Affiliation:1.College of Automation, Xi’an University of Technology, Xi’an 710048, China2.College?of?Mechanical?and?Electrical?Engineering, Xi’an University of Electronic Science and Technology, Xi’an  710071, China
Abstract:To further improve the recognition rate of facial expressions, a face recognition method based on deep learning and Stacked Hybrid Auto-Encoder(SHAE) is adopted. The structure of the method is a 5-layer network structure composed of a Denoising Auto-Encoder(DAE), a Sparse Auto-Encoder(SAE), and an Auto-Encoder(AE). In order to increase the robustness and generalization ability of the network, a DAE is used to extract features from the samples. In order to reduce the dimensions of the extracted features and to extract further abstract sparse features, a SAE is used for cascading, and further processing of features. The training process begins with pre-training and overall fine-tuning of the unlabeled data, initializing and updating the weight of the whole structure, and then testing and training with labeled data. Experiments on two datasets, JAFFE and CK+, show that this method has a better recognition effect than a purely stacked DAE or apurely stacked SAE.
Keywords:face expression recognition  Stacked Hybrid Auto-Encoder  Sparse Auto-Encoder  Denoising Auto-Encoder  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号