首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Al dopant concentration on structural,optical and photoconducting properties in nanostructured zinc oxide thin films
Authors:T. Ganesh  S. Rajesh  Francis P. Xavier
Affiliation:1. Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai 600034, India;2. PG & Research Department of Physics, Presidency College, Chennai 600005, India;3. PG & Research Department of Physics, A.M. Jain College, Chennai 600114, India;4. Loyola-ICAM College of Engineering and Technology, Chennai 600034, India
Abstract:Thin films of undoped and doped ZnO, with different Al concentrations (1–5 wt%) were deposited onto glass substrates, by the sol–gel spin coating method. Grazing incidence X-ray diffraction (GIXRD) studies confirmed the nature of films as poly-crystalline, with typical hexagonal wurtzite structure. The films showed variation in crystallite size and change in relative intensities, upon different Al doping concentrations. The surface morphology of the films examined using FE-SEM, showed the grain size becoming smaller upon Al doping. The influence of Al with different concentrations, onto ZnO on the optical absorption and transmittance was studied using UV–Vis–NIR spectrophotometer in the wavelength range 300–2500 nm. The UV absorption shifted towards shorter wavelength upon Al doping. The average transmittance in the visible region increased for Al doped films up to 1–2 wt% and decreased for other concentration. The dark and photo conductivity measurements of the films indicated increase in the current values upon doping up to 1–2 wt% of Al and decreased for further concentrations. The rise and decay time measured from the photoresponse study, indicate larger values of rise time for the doped films compared to undoped ZnO. However, the film with 1–2 wt% doping of Al showed better response within the doping concentration. The thermal activation energy obtained from temperature-dependant conductivity showed decrease in the value upon Al doping up to 2 wt% and increased beyond this concentration in the temperature range 300–400 K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号